Self-Oscillating Converter Based on Phase Tracking Closed Loop for a Dynamic IPT System

Author:

Chen Lin1,Luo Daqing2,Hong Jianfeng3,Guan Mingjie2ORCID,Chen Wenxiang2ORCID

Affiliation:

1. Xiamen Kehua Digital Energy Tech Co., Ltd., Xiamen 361000, China

2. Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361005, China

3. School of Automative and Mechanical Engineering, Xiamen University of Technology, Xiamen 361005, China

Abstract

The coupling of converters with resonant networks poses significant challenges for frequency tracking and power control in inductive power transfer (IPT) systems. This paper presents an implementation method that addresses these issues by dividing the system’s operation into two distinct states: self-oscillating and power-injecting. Based on these states, a phase-closed loop is constructed. Within this closed loop, the phase tracking unit detects and tracks frequency drift, while the power regulating unit incorporates an integrator and adopts a control variable to adjust the output power by modifying the duration of the power injecting state. Meanwhile, the oscillating unit operates in the self-oscillating state. Operating in this manner, the system achieves self-oscillation and demonstrates the capability to effectively track and compensate for system variations within a single cycle. A verification prototype has been constructed, and it demonstrates that the converter within it completely decoupled from the resonant network. Experimental results validate that altering the control variable solely affects the duration of the power-injecting state, allowing for independent control of the output power. When the control variable changes from 2.0 V to 3.5 V, the output power changes from 178 W to 519 W while the self-oscillating state remains unchanged. Furthermore, the system accurately tracks frequency changes, even under significant variations in the coupling coefficient or load, without compromising the power injection state. When the air gap changes from 3 cm to 12 cm, the duration of the self-oscillating state changes from 22.1 μs to 26.3 μs, while the power injecting state remains unchanged. This approach exhibits a robust performance, particularly suitable for dynamic IPT systems sensitive to parameter variations.

Funder

Natural Science Foundation of Fujian Province

Fujian Provincial Science and Technology Plan Project

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3