The Cut-Cell Method for the Conjugate Heat Transfer Topology Optimization of Turbulent Flows Using the “Think Discrete–Do Continuous” Adjoint

Author:

Galanos Nikolaos1ORCID,Papoutsis-Kiachagias Evangelos M.1ORCID,Giannakoglou Kyriakos C.1

Affiliation:

1. Parallel CFD & Optimization Unit (PCOpt), School of Mechanical Engineering, National Technical University of Athens, 15772 Athens, Greece

Abstract

This paper presents a topology optimization (TopO) method for conjugate heat transfer (CHT), with turbulent flows. Topological changes are controlled by an artificial material distribution field (design variables), defined at the cells of a background grid and used to distinguish a fluid from a solid material. To effectively solve the CHT problem, it is crucial to impose exact boundary conditions at the computed fluid–solid interface (FSI); this is the purpose of introducing the cut-cell method. On the grid, including also cut cells, the incompressible Navier–Stokes equations, coupled with the Spalart–Allmaras turbulence model with wall functions, and the temperature equation are solved. The continuous adjoint method computes the derivatives of the objective function(s) and constraints with respect to the material distribution field, starting from the computation of derivatives with respect to the positions of nodes on the FSI and then applying the chain rule of differentiation. In this work, the continuous adjoint PDEs are discretized using schemes that are consistent with the primal discretization, and this will be referred to as the “Think Discrete–Do Continuous” (TDDC) adjoint. The accuracy of the gradient computed by the TDDC adjoint is verified and the proposed method is assessed in the optimization of two 2D cases, both in turbulent flow conditions. The performance of the TopO designs is investigated in terms of the number of required refinement steps per optimization cycle, the Reynolds number of the flow, and the maximum allowed power dissipation. To illustrate the benefits of the proposed method, the first case is also optimized using a density-based TopO that imposes Brinkman penalization terms in solid areas, and comparisons are made.

Funder

Hellenic Foundation for Research and Innovation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3