Influence of a Built-in Finned Trombe Wall on the Indoor Thermal Environment in Cold Regions

Author:

Qi Xiaobing1,Wang Jialong1,Wang Ye12

Affiliation:

1. School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

2. Key Laboratory of Railway Vehicle Thermal Engineering, Ministry of Education, Lanzhou 730070, China

Abstract

This study focuses on energy conservation, reducing the amount of energy consumed to heat a room, and decreasing the intensity of carbon emissions. The research object is a room heated by a floor with a built-in finned Trombe wall (TW) located in Lanzhou, Gansu Province. ANSYS software was employed to conduct a simulation study on parameters such as fin height, transverse spacing, longitudinal spacing, arrangement mode, and fin apex angle. The simulation results were used to determine the fin parameters’ thermal impact on the TW’s thermal performance, including with respect to a room’s thermal environment (TE). The results show that the heat transfer performance of a TW with respect to the thermal environment of a room is the greatest when the height of the heat-absorbing surface is 20 mm, the transverse spacing is 0.20 m, the longitudinal spacing is 0.533 m, and in-line 90° top-angle fins, that is, isosceles right triangle fins, are used. The average Nu number of the fin-type TW is 154.75. Compared with the average Nu number of the finless TW, which is 141.43, the average Nu number increases by 13.32 due to the addition of fins. The optimized fin-type TW has 7.77% higher convective heat supply efficiency than the finless TW. Although the PMV-PPD results of the two TW-type rooms are not very different, the comfort period of the fin-type TW room is longer. At the same time, the LPD3 of the non-finned TW and the finned TW rooms is less than 10%, the wind speed at the head and ankle is less than 0.12 m/s, the air gust sensation is not strong, and the thermal comfort is good, indicating that the addition of fins is beneficial to the improvement of indoor thermal comfort. Compared to standard rooms, finless TW rooms and fin-type TW rooms have energy-saving rates of 36.38% and 44.63%, respectively. Thus, fin-type TW rooms’ energy saving rate is 8.25% higher, resulting in effective savings in heating energy consumption. Therefore, the indoor TE and auxiliary heating conditions are improved, and the integration of solar building technology can be facilitated, which offers significant reference value for energy transformation.

Funder

Natural Science Foundation of Gansu

National Natural Science Foundation of China

Gansu Province Higher Education Industry

Fundamental Research Talent Selection Project of Lanzhou Jiaotong University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3