Animal Manure as an Alternative Bioenergy Resource in Rural Sub-Saharan Africa: Present Insights, Challenges, and Prospects for Future Advancements

Author:

Sibanda Timothy1ORCID,Uzabakiriho Jean Damascene2ORCID

Affiliation:

1. School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg 2050, South Africa

2. Department of Biochemistry, Microbiology and Biotechnology, Faculty of Agriculture, Engineering and Natural Sciences, University of Namibia, Windhoek 13301, Namibia

Abstract

Energy availability is a pivotal driver in fostering sustainable socio-economic development. However, sub-Saharan Africa (SSA) grapples with paradoxes headlined by abundant energy resources but with the world’s lowest access to clean energy index per capita. Faced with a lack of access to clean energy sources like electricity, rural areas in the majority of SSA countries almost exclusively depend on biomass-fuels, mostly fuelwood, leading to heightened respiratory health risks as well as environmental degradation and accelerated climate change. As an alternative, this review investigates the potential of animal manure as a sustainable energy resource for rural SSA households, emphasising its utilisation as a feedstock for biogas production using anaerobic digestor technology. Results show that despite the abundance of literature that reports on successes in lab-scale bioreactor optimisation, as well as successes in the initial rollout of biogas biodigester technology in SSA with the help of international collaborators, the actual uptake of biogas bioreactor technology by rural communities remains low, while installed bioreactors are experiencing high failure rates. Resultantly, rural SSA still lags significantly behind in the adoption of sustainable clean energy systems in comparison to rural communities in other regions. Among some of the hurdles identified as driving low technology assimilation are onerous policy requirements, low-level government involvement, high bioreactor-instalment costs, the lack of training and awareness, and water scarcity. Prospects for success lie in innovative technologies like the low-cost portable FlexiBiogas system and private–public partnerships, as well as flexible energy policy frameworks. Bridging the knowledge-implementation gap requires a holistic approach considering cultural, technological, and policy aspects.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3