A Method toward Real-Time CFD Modeling for Natural Ventilation

Author:

Wu Wentao,Wang Bing,Malkawi Ali,Yoon NariORCID,Sehovic Zlatan,Yan Bin

Abstract

Natural ventilation is often used as a passive technology to reduce building energy consumption. To leverage the rule-based natural ventilation control to more advanced control at multiple spatial scales, mathematical modeling is needed to calculate the real-time ventilation rate, indoor air temperatures, and velocities at high spatial resolution. This study aims to develop a real-time mathematical modeling framework based on computational fluid dynamics (CFD). The real-time concept is implemented by using real-time sensor data, e.g., wall surface temperatures as boundary conditions, while data assimilation is employed to implement real-time self-calibration. The proof of concept is demonstrated by a case study using synthetic data. The results show that the modeling framework can adequately predict real-time ventilation rates and indoor air temperatures. The data assimilation method can nudge the simulated air velocities toward the observed values to continuously calibrate the model. The real-time CFD modeling framework will be further tested by the real-time sensor data once building construction is fully completed.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Reference36 articles.

1. Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade

2. Zero Energy Buildings: A Critical Look at the Definition;Torcellini,2006

3. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of Buildings (recast);Off. J. Eur. Union,2010

4. Controlled natural ventilation for energy efficient buildings

5. Evaluation of methods for determining air exchange rate in a naturally ventilated dairy cattle building with large openings using computational fluid dynamics (CFD)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3