Prediction of Human Activities Based on a New Structure of Skeleton Features and Deep Learning Model

Author:

Jaouedi Neziha,Perales Francisco J.ORCID,Buades José MariaORCID,Boujnah Noureddine,Bouhlel Med Salim

Abstract

The recognition of human activities is usually considered to be a simple procedure. Problems occur in complex scenes involving high speeds. Activity prediction using Artificial Intelligence (AI) by numerical analysis has attracted the attention of several researchers. Human activities are an important challenge in various fields. There are many great applications in this area, including smart homes, assistive robotics, human–computer interactions, and improvements in protection in several areas such as security, transport, education, and medicine through the control of falling or aiding in medication consumption for elderly people. The advanced enhancement and success of deep learning techniques in various computer vision applications encourage the use of these methods in video processing. The human presentation is an important challenge in the analysis of human behavior through activity. A person in a video sequence can be described by their motion, skeleton, and/or spatial characteristics. In this paper, we present a novel approach to human activity recognition from videos using the Recurrent Neural Network (RNN) for activity classification and the Convolutional Neural Network (CNN) with a new structure of the human skeleton to carry out feature presentation. The aims of this work are to improve the human presentation through the collection of different features and the exploitation of the new RNN structure for activities. The performance of the proposed approach is evaluated by the RGB-D sensor dataset CAD-60. The experimental results show the performance of the proposed approach through the average error rate obtained (4.5%).

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3