A Comprehensive Brain MRI Image Segmentation System Based on Contourlet Transform and Deep Neural Networks

Author:

Khalili Dizaji Navid1ORCID,Doğan Mustafa2ORCID

Affiliation:

1. Department of Mechatronics Engineering, Istanbul Technical University, 34467 Istanbul, Turkey

2. Department of Control and Automation Engineering, Istanbul Technical University, 34467 Istanbul, Turkey

Abstract

Brain tumors are one of the deadliest types of cancer. Rapid and accurate identification of brain tumors, followed by appropriate surgical intervention or chemotherapy, increases the probability of survival. Accurate determination of brain tumors in MRI scans determines the exact location of surgical intervention or chemotherapy. However, this accurate segmentation of brain tumors, due to their diverse morphologies in MRI scans, poses challenges that require significant expertise and accuracy in image interpretation. Despite significant advances in this field, there are several barriers to proper data collection, particularly in the medical sciences, due to concerns about the confidentiality of patient information. However, research papers for learning systems and proposed networks often rely on standardized datasets because a specific approach is unavailable. This system combines unsupervised learning in the adversarial generative network component with supervised learning in segmentation networks. The system is fully automated and can be applied to tumor segmentation on various datasets, including those with sparse data. In order to improve the learning process, the brain MRI segmentation network is trained using a generative adversarial network to increase the number of images. The U-Net model was employed during the segmentation step to combine the remaining blocks efficiently. Contourlet transform produces the ground truth for each MRI image obtained from the adversarial generator network and the original images in the processing and mask preparation phase. On the part of the adversarial generator network, high-quality images are produced, the results of which are similar to the histogram of the original images. Finally, this system improves the image segmentation performance by combining the remaining blocks with the U-net network. Segmentation is evaluated using brain magnetic resonance images obtained from Istanbul Medipol Hospital. The results show that the proposed method and image segmentation network, which incorporates several criteria, such as the DICE criterion of 0.9434, can be effectively used in any dataset as a fully automatic system for segmenting different brain MRI images.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3