Using 7Be and 137Cs for Assessing the Land Stability of Alexandria Region, Egypt

Author:

Saleh Ibrahim H.1ORCID,Ibrahim Nessma M.1ORCID,Hassaan Mahmoud Adel1ORCID,Ghatass Zekry F.1,Arayro Jack2ORCID,Mezher Rabih2ORCID,Ibosayyed Mohmad3,Elsafi Mohamed4ORCID

Affiliation:

1. Department of Environmental Studies and Research, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt

2. College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait

3. Renewable Energy and Environmental Technology Center, University of Tabuk, Tabuk 47913, Saudi Arabia

4. Physics Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt

Abstract

This paper presents an assessment of land stability using fallout environmental radioisotopes 7Be and 137Cs. The measurement of both isotopes was carried out in samples of soil collected from twenty-five sites covering the studied region. At each site, the samples were taken from five consecutive vertical depth levels to show the vertical displacement or compactness of the soil column. The collected samples were carefully transferred for radioactivity measurement at Alexandria University’s Institute of Graduate Studies and Research. A high-resolution gamma-ray spectrometer utilizing high-purity germanium was employed for the measurements. Surface distribution of the radionuclides levels was used to show the studied lands’ stability over the short- and long-term based on the used radionuclides’ nuclear half-life. For short-term (months) stability, 7Be (half-life: 35.5 days) levels showed that about 73% of the area is very low in stability, while the areas that recorded low, moderate, and high stability are at 18%, 4%, and 5%, respectively. For long-term (years) stability, 137Cs (half-life: 30 years) levels showed that about 80% of the areas are very low in stability, while the remaining areas, predicted as 12.8%, 5.6%, and 1.6%, are low, moderate, and high stability, respectively. It is clear that the eastern side of Alexandria is suffering from soil erosion and subsidence; on the other hand, the western side is more stable. Consequently, due to the origin of the soil, the nature of soil geological formations, and the environmental prevailing conditions, Alexandria is found to be more vulnerable to the consequences of sea-level rise and climate change. Therefore, adequate strategic management, including mitigation measures and adaptation, should be planned and implemented.

Publisher

MDPI AG

Reference28 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3