Sustainable Biocatalytic Synthesis of a Second-Generation Biolubricant

Author:

Montiel María Claudia1,Gómez María1ORCID,Murcia María Dolores1ORCID,Ortega-Requena Salvadora1,Máximo Fuensanta1ORCID,Bastida Josefa1ORCID

Affiliation:

1. Department of Chemical Engineering, Faculty of Chemistry, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain

Abstract

Background: Biolubricants represent a category of lubricating substances derived from sustainable sources such as vegetable oils, animal fats, and other bio-based materials. They are considered more environmentally friendly than mineral-based lubricants because they are biodegradable and nontoxic. Biolubricants derived from vegetable oils or animal fats were used as first-generation biolubricants. They have limited performance at extreme temperatures, both high and low, as well as low oxidative stability. Substitution of the double bonds by branching improves the performance and stability of the resulting second-generation biolubricants. Methods: In the past, the production of these compounds has relied on the chemical pathway. This method involves elevated temperatures and inorganic catalysts, leading to the necessity of additional purification steps, which decreases environmental sustainability and energy efficiency. A more environmentally friendly alternative, the enzymatic route, has been introduced, in accordance with the principles of “Green Chemistry”. Results: In this paper, the esterification of 2-methylhexanoic acid with 2-octyl-1-dodecanol and its optimization were developed for the first time. The synthesis was conducted within a jacketed batch reactor connected to a thermostatic bath in a solvent-free reaction medium and using Lipozyme® 435 as biocatalyst. Conclusions: The high viscosity index value of this new hyperbranched ester (>200, ASTM D2270) suggests that it may be an excellent biolubricant to be used under extreme temperature conditions. Regarding sustainability, the main green metrics calculated point to an environmentally friendly process.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3