Influence of Different Forms on BIPV Gymnasium Carbon-Saving Potential Based on Energy Consumption and Solar Energy in Multi-Climate Zones

Author:

Dong Yu12ORCID,Duan Haoqi12ORCID,Li Xueshun12,Zhang Ruinan12

Affiliation:

1. School of Architecture and Design, Harbin Institute of Technology, Harbin 150001, China

2. Key Laboratory of Cold Region Urban and Rural Human Settlement Environment Science and Technology, Ministry of Industry and Information Technology, Harbin 150001, China

Abstract

In this study, the influence of the gymnasium building form on energy consumption and photovoltaic (PV) potential was investigated to address its high energy consumption and carbon emissions issues. Five cities in different climate zones in China (Harbin, Beijing, Shanghai, Guangzhou, and Kunming) were selected as case study environments to simulate and calculate the energy use intensity (EUI), photovoltaic power generation potential (PVPG), and CO2 emission (CE) indicators for 10 typical gymnasium building forms, while also assessing the impact of building orientation. This study found that changes in gymnasium building orientation can cause a 0.5–2.5% difference in EUI under the five climatic conditions, whereas changes in building form can cause a 1.9–6.4% difference in EUI. After integrating a building-integrated photovoltaic (BIPV) system on the roof, changes in building orientation and form can lead to a 0–14.4% and 7.6–11.1% difference in PVPG and a 7.8–68.1% and 8.7–72.0% difference in CE. The results demonstrate that both the choice of form and orientation contribute to a reduction in carbon emissions from BIPV gymnasiums, with the rational choice of form having a higher potential for carbon savings than orientation. These research findings can guide the initial selection of gymnasium designs to pursue low-carbon goals.

Funder

Key Research and Development Program Project of 2023, Heilongjiang Province, China

Publisher

MDPI AG

Reference67 articles.

1. Extreme Weather and Climate Change: Population Health and Health System Implications;Ebi;Annu. Rev. Public Health,2021

2. GlobalABC (2021). Global Status Report for Buildings and Construction, UNEP.

3. Research on Carbon Emission Peak Prediction and Path of China’s Public Buildings: Scenario Analysis Based on LEAP Model;Zhang;Energy Build.,2023

4. Retracted: Spatial Heterogeneity Analysis of Resource Allocation Efficiency of Sports Venues in China from the Perspective of Polarization Theory;Systems;Mob. Inf. Syst.,2023

5. A Metamodel-Based Multi-Objective Optimization Method to Balance Thermal Comfort and Energy Efficiency in a Campus Gymnasium;Yue;Energy Build.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3