Use of Botulinum Toxin for Limb Immobilization for Rehabilitation in Rats with Experimental Stroke

Author:

Zhang Hongxia12,Liu Jialing12,Bingham Deborah12,Orr Adrienne23,Kawabori Masahito234ORCID,Kim Jong Youl235,Zheng Zhen23,Lam Tina I.23,Massa Stephen M.23,Swanson Raymond A.23ORCID,Yenari Midori A.23ORCID

Affiliation:

1. Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA

2. San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA

3. Department of Neurology, University of California, San Francisco, CA 94143, USA

4. Department of Neurosurgery, Hokkaido University, Sapporo 060-0808, Japan

5. Department of Anatomy, Yonsei University, Seoul 03722, Republic of Korea

Abstract

Motor rehabilitation strategies after unilateral stroke suggest that the immobilization of the healthy, unimpaired limb can promote the functional recovery of a paretic limb. In rodents, this has been modeled using casts, harnesses, and other means of restricting the use of the non-paretic forelimb in models of experimental stroke. Here, we evaluated an alternative approach, using botulinum toxin injections to limit the function of the non-paretic forelimb. Adult male rats were subjected to permanent ligation of the left distal middle cerebral artery, resulting in right forelimb paresis. The rats were then subjected to: (1) no treatment; (2) botulinum toxin injections 1 day post stroke; or (3) cast placement 5 days post stroke. Casts were removed after 5 weeks, while the botulinum toxin injection effectively immobilized subjects for approximately the same duration. Rats with bilateral forelimb impairment due to the stroke plus casting or botulinum injections were still able to feed and groom normally. Both immobilization groups showed modest recovery following the stroke compared to those that did not receive immobilization, but the casting approach led to unacceptable levels of animal stress. The botulinum toxin approach to limb immobilization had both advantages and disadvantages over traditional physical limb immobilization. The major advantage was that it was far less stress-inducing to the subject animals and appeared to be well tolerated. A disadvantage was that the paresis took roughly 10 weeks to fully resolve, and any degree of residual paresis could confound the interpretation of the behavioral assessments.

Funder

VA RR&D Research Enhancement Award

NIH NINDS

Veterans Affairs Merit Awards

Veterans Affairs Medical Center, San Francisco, California

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3