Genome-Wide Analysis of microRNA Expression Profile in Roots and Leaves of Three Wheat Cultivars under Water and Drought Conditions

Author:

Gómez-Martín Cristina1ORCID,Zhou Hui2,Medina José María34,Aparicio-Puerta Ernesto5,Shi Bujun2,Hackenberg Michael3467ORCID

Affiliation:

1. Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands

2. School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA 5064, Australia

3. Computational Genomics and Bioinformatics Group, Genetics Department, University of Granada, 18071 Granada, Spain

4. Bioinformatics Laboratory, Biotechnology Institute, Centro de Investigación Biomédica, PTS, Avda. del Conocimiento s/n, 18100 Granada, Spain

5. Chair for Clinical Bioinformatics, Saarland University, 66123 Saarbrücken, Germany

6. Instituto de Investigación Biosanitaria ibs.GRANADA, University of Granada, 18071 Granada, Spain

7. Excellence Research Unit “Modelling Nature” (MNat), University of Granada, 18071 Granada, Spain

Abstract

Wheat is one of the most important food sources on Earth. MicroRNAs (miRNAs) play important roles in wheat productivity. To identify wheat miRNAs as well as their expression profiles under drought condition, we constructed and sequenced small RNA (sRNA) libraries from the leaves and roots of three wheat cultivars (Kukri, RAC875 and Excalibur) under water and drought conditions. A total of 636 known miRNAs and 294 novel miRNAs were identified, of which 34 miRNAs were tissue- or cultivar-specific. Among these, 314 were significantly regulated under drought conditions. miRNAs that were drought-regulated in all cultivars displayed notably higher expression than those that responded in a cultivar-specific manner. Cultivar-specific drought response miRNAs were mainly detected in roots and showed significantly different drought regulations between cultivars. By using wheat degradome library, 6619 target genes were identified. Many target genes were strongly enriched for protein domains, such as MEKHLA, that play roles in drought response. Targeting analysis showed that drought-downregulated miRNAs targeted more genes than drought-upregulated miRNAs. Furthermore, such genes had more important functions. Additionally, the genes targeted by drought-downregulated miRNAs had multiple interactions with each other, while the genes targeted by drought-upregulated miRNAs had no interactions. Our data provide valuable information on wheat miRNA expression profiles and potential functions in different tissues, cultivars and drought conditions.

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3