Biophysical and Biochemical Characterization of the Binding of the MarR-like Transcriptional Regulator Saro_0803 to the nov1 Promotor and Its Inhibition by Resveratrol

Author:

He Zhen1,Ke Zunhui2,Wang Wei3,Liu Yahui1,Zhang Haoran1ORCID,Li Yan14ORCID

Affiliation:

1. Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China

2. Department of Blood Transfusion, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China

3. Medical Subcenter of HUST Analytical & Testing Center, Huazhong University of Science and Technology, Wuhan 430030, China

4. Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China

Abstract

Saro_0803 is a transcriptional factor modulating the transcription of the stilbene-degrading enzyme gene nov1 in Novosphingobium aromaticivorans DSM 12444. Reportedly, Saro_0803 undergoes resveratrol-mediated dissociation from the nov1 promotor and distinguishes resveratrol from its precursors, p-coumaric acid and trans-cinnamic acid, enabling the transcriptional factor to serve as a biosensor component for regulating resveratrol biosynthesis. However, little is known about the molecular mechanisms underlying the Saro_0803 interactions with either the nov1 promotor gene or resveratrol, which undermines the potential for Saro_0803 to be further modified for improved biosynthetic performance and other applications. Here, we report the discovery of the 22 bp A/T-rich Saro_0803 binding site near the −10 box of the nov1 promotor (named nov1p22bp). As validated by molecular docking-guided mutagenesis and binding affinity assays, the Saro_0803 binding of its target DNA sequence relies on charge-predominating interactions between several typical positively charged residues and nucleic acid. Furthermore, we semi-quantified the influence of resveratrol presence on Saro_0803–nov1p22bp interaction and identified a bilateral hydrophobic pocket within Saro_0803 comprising four aromatic residues that are crucial to maintaining the resveratrol binding capability of the transcriptional factor. Our data are beneficial to understanding saro_0803′s structural and functional properties, and could provide theoretical clues for future adaptations of this transcriptional factor.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3