Dual Effect of Microplastics and Cadmium on Stream Litter Decomposition and Invertebrate Feeding Behavior

Author:

He Hualong1ORCID,Cai Sulin1,Chen Siyuan1,Li Qiang1,Luo Yunchao2ORCID,Zeng Xiaoyi3,Ye Rumeng4,Wan Pengwei1,Tian Xingjun15ORCID

Affiliation:

1. School of Life Sciences, Nanjing University, Nanjing 210023, China

2. School of Life Sciences, Shanxi Normal University, Taiyuan 030031, China

3. School of Biological Sciences, The University of Hong Kong, Hong Kong, China

4. School of Water Resource and Environmental Engineering, Nanyang Normal University, Nanyang 473061, China

5. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

Abstract

This study investigates the combined effect of microplastics and cadmium on the decomposition of litter, the structure of fungal communities, and the feeding behavior of invertebrates in an aquatic ecosystem. Through a series of microcosm experiments, we demonstrate that exposure to MPs and Cd significantly reduced the decomposition of leaf litter. Notably, the cumulative impact of combined MP and Cd exposure was found to be greater than their individual effects. During this process, the carbon–nitrogen ratio of the litter increased, while dehydrogenase activity and fungal biomass were inhibited. Additionally, the relative abundance of Ascomycota and Basidiomycota fungi decreased, weakening their role in the decomposition of leaf litter. Conversely, MPs and Cd reduced the relative content of leaf litter lignin, improving its quality as food, thereby leading to an increase in the feeding rate of invertebrates. This dual effect indicates that micropollutants suppress the decomposition of litter by regulating microbial metabolic activity and fungal community structure but promote invertebrate feeding. Our findings provide crucial insights into the adverse effects of MPs and Cd on the structure and diversity of aquatic fungal communities, which could have long-term impacts on the food webs and nutrient cycling progress of aquatic ecosystems.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3