Abstract
We report the formation of thermally stable catalyst nanoparticles via intermittent sputtering deposition to prevent the agglomeration of the nanoparticles during thermal chemical vapor deposition (CVD) and for the high-density growth of carbon nanotubes (CNTs). The preparation of high-areal-density and small-diameter catalyst nanoparticles on substrates for the high-density growth of CNTs is still a challenging issue because surface diffusion and Ostwald ripening of the nanoparticles induce agglomeration, which results in the low-density growth of large-diameter CNTs during high-temperature thermal CVD. Enhancing the adhesion of nanoparticles or suppressing their diffusion on the substrate to retain a small particle diameter is desirable for the preparation of thermally stable, high-areal-density, and small-diameter catalyst nanoparticles. The intermittent sputtering method was employed to deposit Ni and Fe metal nanoparticles on a substrate for the synthesis of high-areal-density CNTs for Fe nanoparticle catalyst films. The metal particles deposited via intermittent sputtering with an interval time of over 30 s maintained their areal densities and diameters during the thermal CVD process in a vacuum for CNT synthesis. An interval of over 30 s was expected to oxidize the metal particles, which resulted in thermal stability during the CVD process. The intermittent sputtering method is thus a candidate process for the preparation of thermally stable catalyst films for the growth of a high density of long CNTs, which can be combined with the present CNT production process.
Funder
Kakenhi Grants-in-Aid from the Japan Society for the Promotion of Science (JSPS).
Subject
General Materials Science,General Chemical Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献