Abstract
Pure zinc hydroxystannate (ZnSn(OH)6) and LiCl-doped ZnSn(OH)6 have been synthesized through a facile wet chemical method. The LiCl-doped samples keep their original spherical morphology as pure ZnSn(OH)6, with some LiCl particles stuck to its surface, providing more active sites for the adsorption and desorption of water molecules. The influence of LiCl doping on the humidity-sensing properties was explored by varying the dopant concentration. The 16 wt% LiCl/ZnSn(OH)6 showed a better humidity-sensing performance than that of the pure ZnSn(OH)6 and other doped samples, including a high resistive sensitivity, a relatively small hysteresis, and a fast response speed. Through the FTIR analysis, the number of hydroxyl groups on the surface structure after aging has been found to decline markedly. These hydroxyl groups provide a platform for the adsorption of water molecules on the surface and promote the dissociation of water molecules. The detriment of aging to sensor performance should not be underrated. The complex impedance spectrum explains the mechanism of the sensor. These results demonstrate that ZnSn(OH)6 has potential application in fabricating humidity sensors, and the sensing performance of the sensor is enhanced by the dopant LiCl.
Funder
The Natural Science Foundation of Xinjiang Uygur Autonomous Region
the National Natural Science Foundation of China
Subject
General Materials Science,General Chemical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献