Coherent Integration of Organic Gel Polymer Electrolyte and Ambipolar Polyoxometalate Hybrid Nanocomposite Electrode in a Compact High-Performance Supercapacitor

Author:

Zhu Jun-JieORCID,Martinez-Soria Luis,Gomez-Romero PedroORCID

Abstract

We report a gel polymer electrolyte (GPE) supercapacitor concept with improved pathways for ion transport, thanks to a facile creation of a coherent continuous distribution of the electrolyte throughout the electrode. Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) was chosen as the polymer framework for organic electrolytes. A permeating distribution of the GPE into the electrodes, acting both as integrated electrolyte and binder, as well as thin separator, promotes ion diffusion and increases the active electrode–electrolyte interface, which leads to improvements both in capacitance and rate capability. An activation process induced during the first charge–discharge cycles was detected, after which, the charge transfer resistance and Warburg impedance decrease. We found that a GPE thickness of 12 μm led to optimal capacitance and rate capability. A novel hybrid nanocomposite material, formed by the tetraethylammonium salt of the 1 nm-sized phosphomolybdate cluster and activated carbon (AC/TEAPMo12), was shown to improve its capacitive performance with this gel electrolyte arrangement. Due to the homogeneous dispersion of PMo12 clusters, its energy storage process is non-diffusion-controlled. In the symmetric capacitors, the hybrid nanocomposite material can perform redox reactions in both the positive and the negative electrodes in an ambipolar mode. The volumetric capacitance of a symmetric supercapacitor made with the hybrid electrodes increased by 40% compared to a cell with parent AC electrodes. Due to the synergy between permeating GPE and the hybrid electrodes, the GPE hybrid symmetric capacitor delivers three times more energy density at higher power densities and equivalent cycle stability compared with conventional AC symmetric capacitors.

Funder

Ministerio de Ciencia Innovacion y Universidades

China Scholarship Council

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3