Study of Mono and Di-O-caffeoylquinic Acid Isomers in Acmella oleracea Extracts by HPLC-MS/MS and Application of Linear Equation of Deconvolution Analysis Algorithm for Their Characterization

Author:

Bellumori Maria1ORCID,Pallecchi Marco1ORCID,Zonfrillo Beatrice1,Lucio Luigi1,Menicatti Marta1,Innocenti Marzia1,Mulinacci Nadia1ORCID,Bartolucci Gianluca1ORCID

Affiliation:

1. NEUROFARBA Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via U. Schiff 6, Sesto Fiorentino, 50019 Firenze, Italy

Abstract

Chlorogenic acids, the esters of caffeic and quinic acids, are the main phenolic acids detected in Acmella oleracea extracts and have gained increasing interest in recent years due to their important biological activities. Given their structural similarity and instability, the correct analysis and identification of these compounds in plants is challenging. This study aimed to propose a simple and rapid determination of the A. oleracea caffeoylquinic isomers, applying an HPLC-MS/MS method supported by a mathematical algorithm (Linear Equation of Deconvolution Analysis (LEDA)). The three mono- and the three di-caffeoylquinic acids in roots of Acmella plants were studied by an ion trap MS analyzer. A separation by a conventional chromatographic method was firstly performed and an MS/MS characterization by energetic dimension of collision-induced dissociation mechanism was carried out. The analyses were then replicated using a short HPLC column and a fast elution gradient (ten minutes). Each acquired MS/MS data were processed by LEDA algorithm which allowed to assign a relative abundance in the reference ion signal to each isomer present. Quantitative results showed no significant differences between the two chromatographic systems proposed, proving that the use of LEDA algorithm allowed the distinction of the six isomers in a quarter of the time.

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3