Abstract
We investigate the dynamical evolution of genuine multipartite correlations for N-qubits in a common reservoir considering a non-dissipative qubits-reservoir model. We derive an exact expression for the time-evolved density matrix by modeling the reservoir as a set of infinite harmonic oscillators with a bilinear form of interaction Hamiltonian. Interestingly, we find that the choice of two-level systems corresponding to an initially correlated multipartite state plays a significant role in potential robustness against environmental decoherence. In particular, the generalized W-class Werner state shows robustness against the decoherence for an equivalent set of qubits, whereas a certain generalized GHZ-class Werner state shows robustness for inequivalent sets of qubits. It is shown that the genuine multipartite concurrence (GMC), a measure of multipartite entanglement of an initially correlated multipartite state, experiences an irreversible decay of correlations in the presence of a thermal reservoir. For the GHZ-class Werner state, the region of mixing parameters for which there exists GMC, shrinks with time and with increase in the temperature of the thermal reservoir. Furthermore, we study the dynamical evolution of the relative entropy of coherence and von-Neumann entropy for the W-class Werner state.
Funder
Department of Science and Technology
Subject
Physics and Astronomy (miscellaneous),Astronomy and Astrophysics,Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献