Phylogeographic and Bioclimatic Determinants of the Dorsal Pattern Polymorphism in the Italian Wall Lizard, Podarcis siculus

Author:

Gallozzi FrancescoORCID,Colangelo PaoloORCID,Senczuk GabrieleORCID,Castiglia Riccardo

Abstract

The geographic variability of the dorsal pattern (DP) of the Italian wall lizard, Podarcis siculus, across its native range was studied with the aim of understanding whether the distributions of this phenotypic trait were more shaped by allopatric differentiation rather than adaptive processes. A total of 1298 georeferenced observations scattered across the Italian peninsula and the main islands (Sicily, Corsica and Sardinia) were obtained from citizen science databases and five DPs were characterized by different shapes of the dark pattern (“reticulated”, “campestris”, “reticulated/campestris” and “striped”) or by absence of it (“concolor”). Frequencies of different DP phenotypes differ between the two main mtDNA lineages settled in central-northern and in southern Italy, respectively. This pattern may be indicative of a role of long-term allopatric historical processes in determining the observed pattern. The analysis also identified a putative wide area of secondary contact, in central southern Italy, characterized by high diversity of the DP. Generalized Linear Models (GLMs), used to estimate a possible association between bioclimatic variables and the observed phenotypic variation, showed that each of the five DPs is correlated to different environmental factors and show a different distribution of areas with high probability of occurrence. However, for all but one of the DPs, the area with the greatest probability does not correspond exactly to the real distribution of the DP. Conversely, the “concolor” phenotype does not seem related to any particular mtDNA lineage and it shows a preference for areas with high temperature and low rainfall. This is in agreement with the expectation of low amount of melanin of the dorsal pattern that, in the study areas, is characterized by a light uniform coloration which could confer a better thermoregulation ability in high temperatures environments to avoid overheating.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3