Ventilation Systems in Wetland Plant Species

Author:

Björn Lars OlofORCID,Middleton Beth A.,Germ Mateja,Gaberščik Alenka

Abstract

Molecular oxygen and carbon dioxide may be limited for aquatic plants, but they have various mechanisms for acquiring these gases from the atmosphere, soil, or metabolic processes. The most common adaptations of aquatic plants involve various aerenchymatic structures, which occur in various organs, and enable the throughflow of gases. These gases can be transferred in emergent plants by molecular diffusion, pressurized gas flow, and Venturi-induced convection. In submerged species, the direct exchange of gases between submerged above-ground tissues and water occurs, as well as the transfer of gases via aerenchyma. Photosynthetic O2 streams to the rhizosphere, while soil CO2 streams towards leaves where it may be used for photosynthesis. In floating-leaved plants anchored in the anoxic sediment, two strategies have developed. In water lilies, air enters through the stomata of young leaves, and streams through channels towards rhizomes and roots, and back through older leaves, while in lotus, two-way flow in separate air canals in the petioles occurs. In Nypa Steck palm, aeration takes place via leaf bases with lenticels. Mangroves solve the problem of oxygen shortage with root structures such as pneumatophores, knee roots, and stilt roots. Some grasses have layers of air on hydrophobic leaf surfaces, which can improve the exchange of gases during submergence. Air spaces in wetland species also facilitate the release of greenhouse gases, with CH4 and N2O released from anoxic soil, which has important implications for global warming.

Funder

Slovenian Research Agency

United States Geological Survey

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3