A Novel BC2N Monolayer as Anode Material for Li-Ion Battery

Author:

Chen Xiaowei12ORCID,Lin Jiahe12,Lin Qiubao12,Li Renquan1,He Hongsheng1

Affiliation:

1. School of Science, Jimei University, Xiamen 361021, China

2. Semiconductor Industry and Technology Research Institute, Jimei University, Xiamen 361021, China

Abstract

The stability, mechanical and electronic properties of a BC2N monolayer and its potential use as an anode material for Li-ion batteries were explored using the density functional theory calculation. The proposed BC2N monolayer shows good thermal and dynamical stabilities, as indicated by the ab initio molecular dynamics simulations and phonon dispersion calculations. The BC2N monolayer exhibits highly anisotropic mechanical properties. The electronic structure calculation based on the hybrid functional suggests that the BC2N monolayer is an indirect bandgap (~1.8 eV) semiconductor. The BC2N monolayer shows linear dichroism and is able to harvest visible and ultraviolet light. To investigate the application of the BC2N monolayer as a potential anode material for Li-ion batteries, the Li adsorption and diffusion on the monolayer were studied. The BC2N monolayer exhibits a high theoretical capacity of 1098 mAh/g for Li-ion batteries. The calculated diffusion barrier of Li ion is 0.45 eV, suggesting a rapid Li-ion charge and discharge rate. The unique mechanical and optical properties of the BC2N monolayer also make it an attractive material for use in advanced nanomechanical and optoelectronic devices.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Scientific Research Starting Foundation of Jimei University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3