Effect of Mechanical Activation and Carbon Coating on Electrochemistry of TiNb2O7 Anodes for Lithium-Ion Batteries

Author:

Kosova Nina V.ORCID,Tsydypylov Dmitry Z.ORCID

Abstract

TiNb2O7 anode material with a Wadsley–Roth crystallographic shear structure was prepared by solid-state synthesis at a relatively low temperature (1000 °C) and a short calcination time (4 h) using preliminary mechanical activation of the reagent mixture. The as-prepared final product was then ball milled in a planetary mill with and without carbon black. The crystal structure and morphology of the samples were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Electrochemical performance was studied in a galvanostatic mode in varied voltage intervals and at different cycling rates in combination with in situ electrochemical impedance spectroscopy (EIS) measurements. The resistance measured using in situ EIS had the highest values at the end of the discharge and the lowest when charging. The lithium diffusion coefficient, determined by galvanostatic intermittent titration technique (GITT), in samples milled with and without carbon black was an order of magnitude higher than that for the pristine sample. It was shown that improved electrochemical performance of the carbon composite TiNb2O7/C (reversible capacity of 250 mAh g−1 at C/10 with Coulomb efficiency of ~99%) was associated with improved conductivity due to the formation of a conductive carbon matrix and uniform distribution of submicron particles by size.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3