Impact of Silicon Content and Particle Size in Lithium-Ion Battery Anodes on Particulate Properties and Electrochemical Performance

Author:

Müller Jannes12ORCID,Michalowski Peter12ORCID,Kwade Arno12ORCID

Affiliation:

1. Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Str. 5, 38104 Braunschweig, Germany

2. Battery LabFactory Braunschweig, Technische Universität Braunschweig, Langer Kamp 19, 38106 Braunschweig, Germany

Abstract

Silicon (Si) is considered a promising anode active material to enhance energy density of lithium-ion batteries. Many studies have focused on new structures and the electrochemical performance, but only a few investigated the particulate properties in detail. Therefore, a comprehensive study on the impact of Si content (5, 10, 15 wt.%) and particle size (120, 160, 250 nm) of core–shell structured Si@Gr composites on particulate and electrode properties was conducted. It was shown that both parameters had significant impact on the specific surface area (SSA) of particles, which was later correlated to the initial capacities and coulombic efficiencies (ICEs). Furthermore, changes in pore size distribution and electrical conductivity were found. The built full cells showed high initial capacities (>150 mAh g−1), good rate capability (75% at 1 C, 50% at 2 C) and ICEs (>80%). The energy density was found to increase by 32% at 15 wt.% Si compared to graphite (Gr), indicating the future potential of Si. In addition, the impact of a carbon coating was investigated (Si@Gr/C), which led to a reduction in SSA, improved particle stability and higher capacity retention. Consequently, this study emphasizes the importance of also investigating the particulate properties of Si anodes.

Funder

German Federal Ministry of Education and Research

German Projektträger Jülich (PTJ) within the project “LiBEST2”

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3