Microwave-Assisted Hydrothermal Synthesis of Space Fillers to Enhance Volumetric Energy Density of NMC811 Cathode Material for Li-Ion Batteries

Author:

Skvortsova Irina,Savina Aleksandra A.ORCID,Orlova Elena D.,Gorshkov Vladislav S.ORCID,Abakumov Artem M.ORCID

Abstract

Ni-rich layered transition metal (TM) oxides are considered to be the most promising cathode materials for lithium-ion batteries because of their high electrochemical capacity, high Li+ ion (de)intercalation potential, and low cobalt content. However, such materials possess several drawbacks including relatively low volumetric energy density caused by insufficient values of tap density. Herein, we demonstrate an exceptionally rapid and energy-saving synthesis of the mixed hydroxide precursor for the LiNi0.8Mn0.1Co0.1O2 (NMC811) positive electrode (cathode) material through a microwave-assisted hydrothermal technique. The obtained material further serves as a space-filler to fill the voids between spherical agglomerates in the cathode powder prepared via a conventional co-precipitation technique boosting the tap density of the resulting mixed NMC811 by 30% up to 2.9 g/cm3. Owing to increased tap density, the volumetric energy density of the composite cathode exceeds 2100 mWh/cm3 vs. 1690 mWh/cm3 for co-precipitated samples. The crystal structure of the obtained materials was scrutinized by powder X-ray diffraction and high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM); the cation composition and homogeneity of TM spatial distribution were investigated using energy-dispersive X-ray spectroscopy in a STEM mode (STEM-EDX). Well-crystallized NMC811 with a relatively low degree of anti-site disorder and homogeneous TM distribution in a combination with the co-precipitated material delivers a reversible discharge capacity as high as ~200 mAh/g at 0.1C current density and capacity retention of 78% after 300 charge/discharge cycles (current density 1C) within the voltage region of 2.7–4.3 V vs. Li/Li+.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3