Facile Synthesizing Yolk-Shelled Fe3O4@Carbon Nanocavities with Balanced Physiochemical Synergism as Efficient Hosts for High-Performance Lithium–Sulfur Batteries

Author:

Chen Lai12,Zhao Chenying12,Lu Yun12,Wan Lingyi12,Yan Kang12ORCID,Bai Youxiang12,Liu Zhiyu12,Yang Xulai23,Su Yuefeng12,Wu Feng12

Affiliation:

1. Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China

2. Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China

3. School of Advanced Manufacturing Engineering, Hefei University, Hefei 230601, China

Abstract

The severe “shuttle effect” of dissolved polysulfide intermediates and the poor electronic conductivity of sulfur cathodes cause capacity decay of lithium–sulfur batteries and impede their commercialization. Herein, we synthesized a series of well-designed yolk-shelled Fe3O4@carbon (YS-Fe3O4@C) nanocavities with different proportions of Fe3O4 as efficient sulfur hosts to stabilize polysulfide intermediates. The yolk-shelled nanocavity architectures were prepared through a facile method, which could effectively confine the active materials and achieve high conductivity. The polysulfide intermediate shuttle was successfully suppressed by a physiochemical synergism effect combining the retention of carbon shells and the adsorption of Fe3O4 nanoparticle cores. The highly conductive carbon shell provides efficient pathways for fast electron transportation. Meanwhile, the visible evolution of active materials and a reversible electrochemical reaction are revealed by in situ X-ray diffraction. With the balanced merits of enhanced electrical conductivity of carbon shell and optimal adsorption of Fe3O4 cores, the S/YS-27Fe3O4@C cathode (Fe3O4 accounts for 27 wt% in YS-Fe3O4@C) had the best electrochemical performance, exhibiting a high reversible specific capacity of 731.9 mAh g−1 and long cycle performance at 1 C (capacity fading rate of 0.03% over 200 cycles).

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3