Affiliation:
1. School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150080, China
2. Shenzhen Academy of Metrology & Quality Inspection, Shenzhen 518000, China
Abstract
Battery state of health (SOH) is a significant metric for evaluating battery life and predicting battery safety. Currently, SOH research is largely based on laboratory data, with a dearth of research on electric vehicle (EV) operating data. Due to the difficulty in obtaining complete charge data under EV operating conditions, this study presents a SOH estimation method utilizing deep network adaptation. First, a data-driven approach is employed to extract voltage, current, state of charge (SOC), and incremental capacity (IC) data features. To compensate for the lack of aging information in the EV operation data domain, transfer learning is employed to construct the SOH estimation model. Additionally, to resolve inconsistent data distribution between the source laboratory battery data domain and the target EV operation data domain, an adaptive layer is added to the network, and adaptation of deep network (ADN) is utilized to enhance the model’s performance. Finally, the model is validated using electric bus operational data. Results indicate that this model’s average Mean Absolute Error (MAE) is less than 3.0%, and, compared to support vector machine (SVM) regression and Gaussian Process Regression (GPR) algorithms, the MAE is reduced by 27.7% and 38.4%, respectively.
Funder
Key-Area Research and Development Program of Guangdong Province
Subject
Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献