Critical Analysis of Simulation of Misalignment in Wireless Charging of Electric Vehicles Batteries

Author:

Ghazizadeh Saeid1,Ahmed Kafeel1,Seyedmahmoudian Mehdi1,Mekhilef Saad1ORCID,Chandran Jaideep1ORCID,Stojcevski Alex1

Affiliation:

1. School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, VIC 3122, Australia

Abstract

The transition from conventional to electric transportation has become inevitable in recent years owing to the significant impact of electric vehicles (EVs) on energy sustainability, reduction of global warming and carbon emission reduction. Despite the rapidly growing global adoption of EVs in today’s electrical and transportation networks, energy storage in EVs, particularly in regards to bulky size and charging process, still remains a major bottleneck. As a result, wireless charging of EVs via inductively coupled power transfer (ICPT) through coupled coils is becoming a promising solution. However, the efficiency of charging EV batteries via wireless charging is hugely affected by misalignment between the primary and secondary coils. This paper presents an in-depth analysis of various key factors affecting the efficiency of EV battery charging. Finite element analysis (FEA) using Ansys Maxwell® is performed on commonly used coil designs such as circular and rectangular coils under various misalignment conditions. In addition, various reactive power compensation topologies applied in ICPT are investigated and the behavior of each topology is observed in simulation. It is revealed that circular structures with S–S compensation topology show more robustness in misalignment conditions and maintain the desired efficiency for a wider range of displacement. A critical analysis of coil designs, compensation techniques and the combination of both factors is accomplished and conclusions are presented.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3