Smart-Leader-Based Distributed Charging Control of Battery Energy Storage Systems Considering SoC Balance

Author:

Zhang YalinORCID,Liu ZhongxinORCID,Chen ZengqiangORCID

Abstract

Battery energy storage systems are widely used in energy storage microgrids. As the index of stored energy level of a battery, balancing the State-of-Charge (SoC) can effectively restrain the circulating current between battery cells. Compared with passive balance, active balance, as the most popular SoC balance method, maximizes the capacity of the battery cells and reduces heat generation. However, there is no good solution in the battery management system (BMS) to ensure active balance during distributed charging. In view of this, this paper designs two novel distributed charging strategies based on a kind of smart leader, in which a constant static leader is modified by a dynamic leader. The modified leader is in charge of guiding SoC to converge to the target value and repress SoC imbalance. The maximum and weighed error between the state of the leader and its neighbor cells are used in the two methods, respectively, both in an event triggered manner. When the relevant index exceeds the threshold, the two methods are used to regulate the leader’s state. Under this modification, the eigenvalue of the followers’ error dynamic system is reduced, and SoCs follow the dynamic leader faster, thus repressing SoC imbalance. Compared with a constant leader, the smart leader pays more attention to improving SoC imbalance. Additionally, to facilitate analysis, a reduced method is applied to transform the system with an unified input time delay into a nondelay system. Several cases are designed to verify the effectiveness of the designed strategies and test it under different parameters and different time delays.

Funder

Tianjin Natural Science Foundation of China

National Natural Science Foundation of China

General Terminal IC Interdisciplinary Science Center of Nankai University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

Reference40 articles.

1. Hybrid energy storage system for microgrids applications: A review;Hajiaghasi;J. Energy Storage,2019

2. A review on liquid air energy storage: History, state of the art and recent developments;Borri;Renew. Sustain. Energy Rev.,2021

3. Bowen, L., Zarr, R., and Denton, S. (1994, January 11–13). A microcontroller controlled battery fuel gauge and charger. Proceedings of the 9th Annual Battery Conference on Applications and Advances, Long Beach, CA, USA.

4. A novel model of the initial state of charge estimation for LiFePO4 batteries;Zhang;J. Power Sources,2014

5. A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems;Wang;Renew. Sustain. Energy Rev.,2020

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3