A Fast Prediction of Open-Circuit Voltage and a Capacity Estimation Method of a Lithium-Ion Battery Based on a BP Neural Network

Author:

Bao Wenkang,Liu Haidong,Sun Yuedong,Zheng Yuejiu

Abstract

The battery is an important part of pure electric vehicles and hybrid electric vehicles, and its state and parameter estimation has always been a big problem. To determine the available energy stored in a battery, it is necessary to know the current state-of-charge (SOC) and the capacity of the battery. For the determination of the battery SOC and capacity, it is generally estimated according to the Electromotive Force (EMF) of the battery, which is the open-circuit-voltage (OCV) of the battery in a stable state. An off-line battery SOC and capacity estimation method for lithium-ion batteries is proposed in this paper. The BP neural network with a high accuracy is trained in the case of sufficient data with the new neural network intelligent algorithm, and the OCV can be accurately predicted in a short time. The model training requires a large amount of data, so different experiments were designed and carried out. Based on the experimental data, the feasibility of this method is verified. The results show that the neural network model can accurately predict the OCV, and the error of capacity estimation is controlled within 3%. The mentioned method was also carried out in a real vehicle by using its cloud data, and the capacity estimation can be easily realized while limiting inaccuracy to less than 5%.

Funder

National Natural Science Foundation of China

Shanghai Science and Technology Development Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3