High-Performance and Low-Cost Membranes Based on Poly(vinylpyrrolidone) and Cardo-Poly(etherketone) Blends for Vanadium Redox Flow Battery Applications

Author:

Mu Tong,Leng Shifan,Tang Weiqin,Shi Ning,Wang Guorui,Yang JingshuaiORCID

Abstract

Energy storage systems have aroused public interest because of the blooming development of intermittent renewable energy sources. Vanadium redox flow batteries (VRFBs) are the typical candidates owing to their flexible operation and good cycle durability. However, due to the usage of perfluorinated separator membranes, VRFBs suffer from both high cost and serious vanadium ions cross penetration. Herein, we fabricate a series of low-budget and high-performance blend membranes from polyvinylpyrrolidone (PVP) and cardo-poly(etherketone) (PEKC) for VFRB. A PEKC network gives the membrane excellent mechanical rigidity, while PVP endows the blend membranes with superior sulfonic acid uptake owing to the present N-heterocycle and carbonyl group in PVP, resulting in low area resistance. Meanwhile, blend membranes also display low vanadium ion permeability resulting from the electrostatic repulsion effect of protonated PVP polymer chains towards vanadium ions. Consequently, the 50%PVP-PEKC membrane has a high ionic selectivity of 1.03 × 106 S min cm−3, while that of Nafion 115 is nearly 17 times lower (6.03 × 104 S min cm−3). The VRFB equipped with 50%PVP-PEKC membrane has high coulombic efficiencies (99.3–99.7%), voltage efficiencies (84.6–67.0%) and energy efficiencies (83.9–66.8%) at current densities of 80–180 mA cm−2, and possesses excellent cycle constancy, indicating that low-cost x%PVP-PEKC blend membranes have a great application potentiality for VRFBs.

Funder

Natural Science Foundation of Liaoning Province

Fundamental Research Funds for the Central Universities of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3