Status and Prospects of Research on Lithium-Ion Battery Parameter Identification

Author:

Li Jianlin1,Peng Yuchen1,Wang Qian1ORCID,Liu Haitao2

Affiliation:

1. National User-Side Energy Storage Innovation Research and Development Center, North China University of Technology, Beijing 100144, China

2. Jiangsu Collaborative Innovation Center for Smart Distribution Network, Nanjing Institute of Technology, Nanjing 211167, China

Abstract

Lithium-ion batteries are widely used in electric vehicles and renewable energy storage systems due to their superior performance in most aspects. Battery parameter identification, as one of the core technologies to achieve an efficient battery management system (BMS), is the key to predicting and managing the performance of Li-ion batteries. However, due to the complex chemical reactions and thermodynamic processes inside lithium-ion batteries, coupled with the influence of the external environment, accurate identification of lithium-ion battery parameters has become an urgent problem to be solved. In addition, data-driven parameter identification can enable battery models to better understand battery behavior, which is one of the focuses of future research. For this reason, this paper comprehensively reviews the application of data-driven parameter identification methods in different scenarios. Firstly, the research briefly explains the working principle of lithium-ion batteries and the key parameters affecting their performance. Secondly, this paper deeply discusses data-driven methods for parameter identification, which are widely used nowadays, and provides improvement ideas to address the shortcomings of traditional methods. Finally, the paper discusses the challenges faced by parameter identification technology for lithium-ion batteries and envisages future prospects.

Funder

National Natural Science Foundation of China

Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3