Affiliation:
1. National User-Side Energy Storage Innovation Research and Development Center, North China University of Technology, Beijing 100144, China
2. Jiangsu Collaborative Innovation Center for Smart Distribution Network, Nanjing Institute of Technology, Nanjing 211167, China
Abstract
Lithium-ion batteries are widely used in electric vehicles and renewable energy storage systems due to their superior performance in most aspects. Battery parameter identification, as one of the core technologies to achieve an efficient battery management system (BMS), is the key to predicting and managing the performance of Li-ion batteries. However, due to the complex chemical reactions and thermodynamic processes inside lithium-ion batteries, coupled with the influence of the external environment, accurate identification of lithium-ion battery parameters has become an urgent problem to be solved. In addition, data-driven parameter identification can enable battery models to better understand battery behavior, which is one of the focuses of future research. For this reason, this paper comprehensively reviews the application of data-driven parameter identification methods in different scenarios. Firstly, the research briefly explains the working principle of lithium-ion batteries and the key parameters affecting their performance. Secondly, this paper deeply discusses data-driven methods for parameter identification, which are widely used nowadays, and provides improvement ideas to address the shortcomings of traditional methods. Finally, the paper discusses the challenges faced by parameter identification technology for lithium-ion batteries and envisages future prospects.
Funder
National Natural Science Foundation of China
Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network