A High-Performance Li-O2/Air Battery System with Dual Redox Mediators in the Hydrophobic Ionic Liquid-Based Gel Polymer Electrolyte

Author:

Feng Ningning1,Wang Chaoqiang2,Wang Jing3,Lin Yang1,Yang Gang1ORCID

Affiliation:

1. Suzhou Key Laboratory of Functional Ceramic Materials Department, Changshu Institute of Technology, Changshu 215500, China

2. School of Space and Environment, Beijing University of Aeronautics and Astronautics, Beijing 102206, China

3. Engineering Research Center of Advanced Aluminium Matrix Materials of Guangxi Province, Baise University, Baise 533000, China

Abstract

Lithium–oxygen (Li-O2) batteries have captured worldwide attention owing to their highest theoretical specific energy density. However, this promising system still suffers from huge discharge/charge overpotentials and poor cycling stability, which are related to the leakage/volatilization of organic liquid electrolytes and the inefficiency of solid catalysts. A mixing ionic liquid-based gel polymer electrolyte (IL-GPE)-based Li-O2 battery, consisting of a 20 mM 2,5-di-tert-butyl-1,4-benzoquinone (DBBQ) 40 mM N-methylphenothiazine (MPT)-containing IL-GPE and a single-walled carbon nanotube cathode, is designed for the first time here. This unique dual redox mediators-based GPE, which contains a polymer matrix immersed with mixed ionic liquid electrolyte, provides a proper ionic conductivity (0.48 mS cm−1) and effective protection for lithium anode. In addition, DBBQ, as the catalyst for an oxygen reduction reaction, can support the growth of discharge products through the solution–phase pathway. Simultaneously, MPT, as the catalyst for an oxygen evolution reaction, can decompose Li2O2 at low charge overpotentials. Hence, the DBBQ-MPT-IL-GPE-based Li-O2 battery can operate for 100 cycles with lower charge/discharge overpotentials. This investigation may offer a promising method to realize high-efficiency Li-O2/air batteries.

Funder

National Natural Science Foundation of China

Guangxi Natural Science Funds

Natural Science Foundation of the Higher Education Institutions of Jiangsu Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3