Synthesis of Plasma-Reduced Graphene Oxide/Lithium Titanate Oxide Composite and Its Application as Lithium-Ion Capacitor Anode Material

Author:

Kim Chan-Gyo1,Jekal Suk1,Otgonbayar Zambaga1,Kim Jiwon1,Ra Yoon-Ho1,Noh Jungchul2ORCID,Oh Won-Chun3ORCID,Yoon Chang-Min1ORCID

Affiliation:

1. Department of Chemical and Biological Engineering, Hanbat National University, Daejeon 34158, Republic of Korea

2. McKetta Department of Chemical Engineering and Texas Material Institute, The University of Texas at Austin, Austin, TX 78712, USA

3. Department of Advanced Materials Science and Engineering, Hanseo University, Seosan-si 31962, Republic of Korea

Abstract

A plasma-reduced graphene oxide/lithium titanate oxide (PrGO/LTO) composite is prepared as an anode material to enhance the performance of lithium-ion capacitors (LICs). The PrGO/LTO composite is synthesized by mixing graphene oxide (GO) and LTO, followed by a series of freeze-drying and plasma-treatment processes. PrGO forms a porous three-dimensional (3D) structure with a large surface area, effectively preventing the restacking of PrGO while covering LTO. The GO/LTO mixing ratio is controlled to optimize the final structure for LIC applications. In lithium-ion half-cell assembly, the PrGO/LTO-based anode with an 80% mixing ratio exhibits the highest specific capacity of 73.0 mAh g−1 at 20 C. This is attributed to the optimized ratio for achieving high energy density from LTO and high power density from PrGO. In a LIC full-cell comprising PrGO/LTO as the anode and activated carbon as the cathode, the energy and power densities at 1 A g−1 are 40.3 Wh kg−1 and 2000 W kg−1, respectively, with a specific capacitance of 36.3 F g−1 and capacitance retention of 94.1% after 2000 cycles. Its outstanding performance, obtained from incorporating 3D-structured PrGO with LTO at an optimized ratio, lowers the cell resistance and provides efficient lithium-ion diffusion pathways.

Funder

development of a high-power supercapacitor R&D program of MOTIE/KEIT

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3