Triggering and Characterisation of Realistic Internal Short Circuits in Lithium-Ion Pouch Cells—A New Approach Using Precise Needle Penetration

Author:

Grabow Jens1ORCID,Klink Jacob1ORCID,Orazov Nury1ORCID,Benger Ralf1ORCID,Hauer Ines2ORCID,Beck Hans-Peter3

Affiliation:

1. Research Center Energy Storage Technologies, Clausthal University of Technology, Am Stollen 19A, D-38640 Goslar, Germany

2. Institute of Electrical Power Engineering and Electrical Energy Engineering, Clausthal University of Technology, Leibnizstraße 28, D-38678 Clausthal-Zellerfeld, Germany

3. Energy Research Centre Lower Saxony, Am Stollen 19A, D-38640 Goslar, Germany

Abstract

The internal short circuit (ISC) in lithium-ion batteries is a serious problem since it is probably the most common cause of a thermal runaway (TR) that still presents many open questions, even though it has been intensively investigated. Therefore, this article focusses on the generation and characterisation of the local single-layer ISC, which is typically caused by cell-internal impurity particles that cannot be completely eliminated in the cell production. A new, very promising method of precise and slow (1 μm s−1) needle penetration made it possible to generate the most safety-critical reliable short-circuit type—the contact between the Al-Collector and the graphite active material of the anode—as demonstrated on a 10 Ah Graphite/NMC pouch cell. The special efforts in achieving high reproducibility as well as the detailed analysis of the initiated internal short-circuit conditions led to more reliable and meaningful results. A comprehensive approach to characterisation has been made by detailed measurement of the dynamic short-circuit evolution and a subsequent post-characterisation, which included the application of different electrochemical measurement techniques as well as a post-abuse analysis. It was shown that the cells demonstrated a very individual and difficult-to-predict behaviour, which is a major challenge for early failure detection and risk assessment of cells with an existing or former ISC. On the one hand, it is found that despite high local temperatures of over 1260 ∘C and significant damage to the cell-internal structure, the cell did not develop a TR even with further cycling. On the other hand, it was observed that the TR occurs spontaneously without any previous abnormalities. Based on the overall test results, it was shown that at the high state of charge (SOC = 100%), even small, dynamically developing voltage drops (<10 mV) must be classified as safety-critical for the cell. For reliable and early failure detection, the first voltage drops of the ISC must already be detected.

Funder

Federal Ministry for Economic Affairs and Climate Action of Germany

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3