Development of Flow Fields for Zinc Slurry Air Flow Batteries

Author:

Choi Nak,del Olmo Diego,Fischer Peter,Pinkwart KarstenORCID,Tübke Jens

Abstract

The flow field design and material composition of the electrode plays an important role in the performance of redox flow batteries, especially when using highly viscous liquids. To enhance the discharge power density of zinc slurry air flow batteries, an optimum slurry distribution in the cell is key. Hence, several types of flow fields (serpentine, parallel, plastic flow frames) were tested in this study to improve the discharge power density of the battery. The serpentine flow field delivered a power density of 55 mW∙cm−2, while parallel and flow frame resulted in 30 mW∙cm−2 and 10 mW∙cm−2, respectively. Moreover, when the anode bipolar plate material was changed from graphite to copper, the power density of the flow frame increased to 65 mW∙cm−2, and further improvement was attained when the bipolar plate material was further changed to copper–nickel. These results show the potential to increase the power density of slurry-based flow batteries by flow field optimization and design of bipolar plate materials.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3