Comprehensive Degradation Analysis of NCA Li-Ion Batteries via Methods of Electrochemical Characterisation for Various Stress-Inducing Scenarios

Author:

Kemeny Martin,Ondrejka PeterORCID,Mikolasek MiroslavORCID

Abstract

Lithium-ion (Li-ion) batteries with Ni-based cathodes are leading storage technology in the fields of electric vehicles and power-grid applications. NCA (LiNiCoAlO2) batteries are known for their troublesome degradation tendencies, and this susceptibility to degradation raises questions regarding the safety of their usage. Hence, it is of vital importance to analyse the degradation of NCA batteries via methods which are applicable to onboard systems, so that the changes in the battery’s state of health can be addressed accordingly. For this purpose, it is crucial to study batteries stressed by various conditions which might induce degradation of different origins or magnitudes. Methods such as electrochemical impedance spectroscopy (EIS), galvanostatic intermittent titration technique (GITT), and incremental capacity analysis (ICA) have been used in battery research for years, however, there is a lack of published studies which would analyse the degradation of NCA batteries by simultaneous usage of these methods, which is essential for a comprehensive and confirmatory understanding of battery degradation. This study intends to fill this research gap by analysing the degradation of NCA batteries via simultaneous usage of EIS, GITT, and ICA methods for common stress-inducing operating conditions (over-charge, over-discharge, and high-current charging).

Funder

Horizont 2020 - ECSEL Joint Undertaking

Vedecká grantová agentúra MŠVVaŠ SR a SAV

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3