Boosting the Capacitance of Aqueous Zinc-Ion Hybrid Capacitors by Engineering Hierarchical Porous Carbon Architecture

Author:

Li Yanzhen1,Zhang Xin1,Lu Tong2,Zhang Ying1,Li Xue1,Yu Dengfeng3,Zhao Gongyuan1

Affiliation:

1. College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China

2. Aulin College, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China

3. State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

Abstract

With the merits of having excellent safety, being low cost and being environmentally friendly, zinc-ion hybrid supercapacitors (ZHSCs) are expected to be widely used in large-scale energy storage and flexible wearable devices. However, limited by their sluggish kinetic process, ZHSCs suffer from low-specific capacity and poor cycling stability at high cathode mass loading. Herein, a novel designed oxygen-rich hierarchical porous carbon (HPOC) is obtained by a one-step strategy of synchronous activation and templated for high-performance ZHSCs. The fabricated ZHSCs with HPOCs show significant improvement in Zn-ion storage capability, with a capacity of 209.4 mAh g−1 at 0.1 A g−1 and 108.3 mAh g−1 at 10 A g−1. Additionally, the cycling stability is excellent, with 92.3% retention after 4000 cycles. Furthermore, an impressive areal capacity of 1.7 mAh cm−2 is achieved, even with a high mass loading of 12.5 mg cm−2. More importantly, the flexible quasi-solid state ZHSCs also show a considerable capability (183.5 mAh g−1 at 0.1 A g−1) and a high energy density of 178.0 Wh kg−1. This promising result suggests a valuable route to produce functional nanocarbon materials for zinc storage applications.

Funder

Fundamental Research Funds for the Central Universities

China Postdoctoral Science Foundation

Postdoctoral Foundation of Heilongjiang Province

College Students’ Innovative Entrepreneurial Training Plan Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3