Affiliation:
1. Electrical Energy Storage Systems, Institute for Photovoltaics, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
2. Karlsruhe Institute of Technology (KIT), Institute for Applied Materials-Applied Materials Physics (IAM-AWP), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Abstract
Since Sony launched the commercial lithium-ion cell in 1991, the composition of the liquid electrolytes has changed only slightly. The electrolyte consists of highly flammable solvents and thus poses a safety risk. Solid-state ion conductors, classified as non-combustible and safe, are being researched worldwide. However, they still have a long way to go before being available for commercial cells. As an alternative, this study presents glyceryl tributyrate (GTB) as a flame retardant and eco-friendly solvent for liquid electrolytes for lithium-ion cells. The remarkably high flashpoint (TFP=174°C) and the boiling point (TBP=287°C) of GTB are approximately 150 K higher than that of conventional linear carbonate components, such as ethyl methyl carbonate (EMC) or diethyl carbonate (DEC). The melting point (TMP=−75°C) is more than 100 K lower than that of ethylene carbonate (EC). A life cycle test of graphite/NCM with 1 M LiTFSI dissolved in GTB:EC (85:15 wt) achieved a Coulombic efficiency of above 99.6% and the remaining capacity resulted in 97% after 50 cycles (C/4) of testing. The flashpoint of the created electrolyte is TFP=172°C and, therefore, more than 130 K higher than that of state-of-the-art liquid electrolytes. Furthermore, no thermal runaway was observed during thermal abuse tests. Compared to the reference electrolyte LP40, the conductivity of the GTB-based is reduced, but the electrochemical stability is highly improved. GTB-based electrolytes are considered an interesting alternative for improving the thermal stability and safety of lithium-ion cells, especially in low power-density applications.
Funder
Federal Ministry of Education and Research
Helmholtz Association
Subject
Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献