Carbon Nano-Onion-Encapsulated Ni Nanoparticles for High-Performance Lithium-Ion Capacitors

Author:

Zhang Xiaohu12,Zhang Keliang2,Zhang Weike3,Zhang Xiong124ORCID,Wang Lei14,An Yabin124,Sun Xianzhong124ORCID,Li Chen124,Wang Kai124,Ma Yanwei124

Affiliation:

1. Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China

2. Institute of Electrical Engineering and Advanced Electromagnetic Drive Technology, Qilu Zhongke, Jinan 250013, China

3. College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030600, China

4. School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Lithium-ion capacitors (LICs) feature a high-power density, long-term cycling stability, and good energy storage performance, and so, LICs will be widely applied in new energy, new infrastructure, intelligent manufacturing. and other fields. To further enhance the comprehensive performance of LICs, the exploration of new material systems has become a focus of research. Carbon nano-onions (CNOs) are promising candidates in the field of energy storage due to the properties of their outstanding electrical conductivity, large external surface area, and nanoscopic dimensions. Herein, the structure, composition, and electrochemical properties of carbon nano-onion-encapsulated Ni nanoparticles (Ni@CNOs) have been characterized first in the present study. The initial discharge and charge capacities of Ni@CNOs as anodes (in half-cells (vs. Li)) were 869 and 481 mAh g−1 at 0.1 A g−1, respectively. Even at a current density of 10 A g−1, the reversible specific capacity remained at 111 mAh g−1. Ni@CNOs were used as anode materials to assemble LICs (full pouch cells (vs. activated carbon)), which exhibited compelling electrochemical performance and cycle stability after optimizing the mass ratio of the positive and negative electrodes. The energy density of the LICs reached 140.1 Wh kg−1 at 280.2 W kg−1 and even maintained 76.6 Wh kg−1 at 27.36 kW kg−1. The LICs also demonstrated excellent cycling stability with a 94.09% capacitance retention over 40,000 cycles. Thus, this work provides an effective solution for the ultra-rapid fabrication of Ni-cored carbon nano-onion materials to achieve high-performance LICs.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

Dalian National Laboratory for Clean Energy (DNL) Cooperation Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3