Affiliation:
1. School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China
2. School of Automation, Chongqing University, Chongqing 400044, China
3. School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen AB10-7GJ, UK
Abstract
To address the challenges of efficient state monitoring of lithium-ion batteries in electric vehicles, a co-estimation algorithm of state-of-charge (SOC) and state-of-health (SOH) is developed. The algorithm integrates techniques of adaptive recursive least squares and dual adaptive extended Kalman filtering to enhance robustness, mitigate data saturation, and reduce the impact of colored noise. At 25 °C, the algorithm is tested and verified under dynamic stress test (DST) and Beijing bus DST conditions. Under the Beijing bus DST condition, the algorithm achieves a mean absolute error (MAE) of 0.17% and a root mean square error (RMSE) of 0.19% for SOC estimation, with a convergence time of 4 s. Under the DST condition, the corresponding values are 0.05% for MAE, 0.07% for RMSE, and 5 s for convergence time. Moreover, in this research, the SOH is described as having internal resistance. Under the Beijing bus DST condition, the MAE and the RMSE of the estimated internal resistance of the proposed approach are 0.018% and 0.075%, with the corresponding values of 0.014% and 0.043% under the DST condition. The results of the experiments provide empirical evidence for the challenges associated with the efficacious estimation of SOC and SOH.
Funder
National Natural Science Foundation of China
Chongqing Natural Science Foundation
Subject
Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献