Bi-Continuous Si/C Anode Materials Derived from Silica Aerogels for Lithium-Ion Batteries

Author:

Shan Yunpeng1,Wang Junzhang1,Xu Zhou1,Bai Shengchi2,Zhu Yingting2,Wang Xiaoqi2ORCID,Guo Xingzhong13ORCID

Affiliation:

1. State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, China

2. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China

3. Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China

Abstract

Poor cycling performance caused by massive volume expansion of silicon (Si) has always hindered the widespread application of silicon-based anode materials. Herein, bi-continuous silicon/carbon (Si/C) anode materials are prepared via magnesiothermic reduction of silica aerogels followed by pitch impregnation and carbonization. To fabricate the expected bi-continuous structure, mesoporous silica aerogel is selected as the raw material for magnesiothermic reduction. It is successfully reduced to mesoporous Si under the protection of NaCl. The as-obtained mesoporous Si is then injected with molten pitch via vacuuming, and the pitch is subsequently converted into carbon at a high temperature. The innovative point of this strategy is the construction of a bi-continuous structure, which features both Si and carbon with a cross-linked structure, which provides an area to accommodate the colossal volume change of Si. The pitch-derived carbon facilitates fast lithium ion transfer, thereby increasing the conductivity of the Si/C anode. It can also diminish direct contact between Si and the electrolyte, minimizing side reactions between them. The obtained bi-continuous Si/C anodes exhibit excellent electrochemical performance with a high initial discharge capacity of 1481.7 mAh g−1 at a current density of 300 mA g−1 and retaining as 813.5 mAh g−1 after 200 cycles and an improved initial Coulombic efficiency of 82%. The as-prepared bi-continuous Si/C anode may have great potential applications in high-performance lithium-ion batteries.

Funder

National Science Foundation of China

China Nation Petroleum Corporation Research Fund Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3