A Review of Modern Machine Learning Techniques in the Prediction of Remaining Useful Life of Lithium-Ion Batteries

Author:

Sharma PrabhakarORCID,Bora Bhaskor J.ORCID

Abstract

The intense increase in air pollution caused by vehicular emissions is one of the main causes of changing weather patterns and deteriorating health conditions. Furthermore, renewable energy sources, such as solar, wind, and biofuels, suffer from weather and supply chain-related uncertainties. The electric vehicles’ powered energy, stored in a battery, offers an attractive option to overcome emissions and uncertainties to a certain extent. The development and implementation of cutting-edge electric vehicles (EVs) with long driving ranges, safety, and higher reliability have been identified as critical to decarbonizing the transportation sector. Nonetheless, capacity deteriorating with time and usage, environmental degradation factors, and end-of-life repurposing pose significant challenges to the usage of lithium-ion batteries. In this aspect, determining a battery’s remaining usable life (RUL) establishes its efficacy. It also aids in the testing and development of various EV upgrades by identifying factors that will increase and improve their efficiency. Several nonlinear and complicated parameters are involved in the process. Machine learning (ML) methodologies have proven to be a promising tool for optimizing and modeling engineering challenges in this domain (non-linearity and complexity). In contrast to the scalability and temporal limits of battery degeneration, ML techniques provide a non-invasive solution with excellent accuracy and minimal processing. Based on recent research, this study presents an objective and comprehensive evaluation of these challenges. RUL estimations are explained in detail, including examples of its approach and applicability. Furthermore, many ML techniques for RUL evaluation are thoroughly and individually studied. Finally, an application-focused overview is offered, emphasizing the advantages in terms of efficiency and accuracy.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

Reference117 articles.

1. Schoettle, B., and Sivak, M. (2018). Resale Values of Electric and Conventional Vehicles: Recent Trends and Influence on the Decision to Purchase a New Vehicle, Sustainable Worldwide Transportation, University of Michigan.

2. Possibilities and Barriers for Using Electric-Powered Vehicles in City Logistics Practice;Quak;Transp. Res. Procedia,2016

3. Batteries and Ultracapacitors for Electric, Hybrid, and Fuel Cell Vehicles;Burke;Proc. IEEE,2007

4. Emission Impacts of Electric Vehicles Emission Impacts of Electric Vehicles;Wang;J. Air Waste Manag. Assoc.,1990

5. The Challenges and Policy Options for Integrating Plug-in Hybrid Electric Vehicle into the Electric Grid;Srivastava;Electr. J.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3