Abstract
The concept of Digital Twin (DT) is widely explored in literature for different application fields because it promises to reduce design time, enable design and operation optimization, improve after-sales services and reduce overall expenses. While the perceived benefits strongly encourage the use of DT, in the battery industry a consistent implementation approach and quantitative assessment of adapting a battery DT is missing. This paper is a part of an ongoing study that investigates the DT functionalities and quantifies the DT-attributes across the life cycles phases of a battery system. The critical question is whether battery DT is a practical and realistic solution to meeting the growing challenges of the battery industry, such as degradation evaluation, usage optimization, manufacturing inconsistencies or second-life application possibility. Within the scope of this paper, a consistent approach of DT implementation for battery cells is presented, and the main functions of the approach are tested on a Doyle-Fuller-Newman model. In essence, a battery DT can offer improved representation, performance estimation, and behavioral predictions based on real-world data along with the integration of battery life cycle attributes. Hence, this paper identifies the efforts for implementing a battery DT and provides the quantification attribute for future academic or industrial research.
Funder
Bundesministerium für Wirtschaft und Energie
Subject
Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献