A Deep Learning Approach for Online State of Health Estimation of Lithium-Ion Batteries Using Partial Constant Current Charging Curves

Author:

Schmitz Mano1,Kowal Julia1ORCID

Affiliation:

1. Chair for Electrical Energy Storage Technology, Technical University of Berlin, Einsteinufer 11, D-10587 Berlin, Germany

Abstract

The accurate state of health (SOH) estimation of lithium-ion batteries (LIBs) during operation is crucial to ensure optimal performance, prolonging battery life and preventing unexpected failure or safety hazards. This work presents a storage- and performance-optimised deep learning approach to estimate the capacity-based SOH of LIBs using raw sensor data from partial charging curves under constant current condition. The proposed model is based on a combination of a one-dimensional convolutional and long short-term memory neural network, and processes time, voltage, and incremental capacity of partial charging curves as time series. The model is cross-validated on different ageing scenarios, reaching an overall MAE = 0.418% and RMSE = 0.531%, promising an accurate SOH estimation of LIBs under varying usage and environmental conditions in a real-world application.

Funder

German Federal Ministry for Economic Affairs and Climate Action

German Research Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3