Density Functional Theory Study of Oxygen Evolution Reaction Mechanism on Rare Earth Sc-Doped Graphene

Author:

Liu Yiwen1,Liao Mengqi1,Hu Yuting1,Lee Tae-Gwan2,Koutavarapu Ravindranadh3ORCID,Peera Shaik Gouse2ORCID,Liu Chao1ORCID

Affiliation:

1. Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China

2. Department of Environmental Science and Engineering, Keimyung University, Daegu 42601, Republic of Korea

3. Department of Robotics Engineering, College of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

Abstract

The development of a stable catalyst with excellent catalytic performance for the oxygen evolution reaction (OER) in alkaline environments is a key reaction in various electrochemical technologies. In this work, single-atom catalysts (SACs) systems in which scandium (Sc), a rare earth metal, with different N/C coordination environments (ScNxC3−x@SACs and ScNxC4−x@SACs of Sc) were systematically studied with the help of density functional theory (DFT) calculations. The results of the structural thermodynamic stability analysis indicated that the ScNxC3−x@SACs and ScNxC4−x@SACs systems are more stable with increasing N atom doping concentration around Sc. The ScN3, ScN3C, and ScN4 with better stability were selected as the objects of subsequent research. However, ScN3 and ScN4 form Sc(OH)2N3 and Sc(OH)2N4 structures with double-hydroxyl groups as ligands because of the strong adsorption of OH species, whereas the strong adsorption of OH species by ScN3C causes structural instability. Here, the overpotential (η) of Sc(OH)2N3 was 1.03 V; Sc(OH)2N4 had two reaction paths and the η of path 1 was 0.80 V, which was 0.30 V lower than that of path 2. Therefore, Sc(OH)2N4 can be used as a stable and promising OER catalyst with easy desorption of O2 and good cycle performance. The hydroxyl ligand modification of Sc-NxC3−x@SACs and Sc-NxC4−x@SACs provides a method for studying the catalytic performance of other rare earth elements.

Funder

Natural Science Foundation of Jiangxi Province

Research Foundation of the Education Department of Jiangxi Province

Program of Qingjiang Excellent Young Talents

Korean government, Ministry of Science, and ICT

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3