Battery Passports for Second-Life Batteries: An Experimental Assessment of Suitability for Mobile Applications

Author:

Hassini Marwan123ORCID,Redondo-Iglesias Eduardo13ORCID,Venet Pascal23ORCID

Affiliation:

1. Univ Eiffel, Univ Lyon, ENTPE, LICIT-ECO7, F-69675 Lyon, France

2. Universite Claude Bernard Lyon 1, Ampère, UMR5005, INSA Lyon, Ecole Centrale de Lyon, CNRS, F-69100 Villeurbanne, France

3. Eco7/Ampère Joint Research Team for Energy Management and Storage for Transport, F-69500 Bron, France

Abstract

End-of-life electric vehicle (EV) batteries can be reused to reduce their environmental impact and economic costs. However, the growth of the second-life market is limited by the lack of information on the characteristics and performance of these batteries. As the volume of end-of-life EVs may exceed the amount of batteries needed for stationary applications, investigating the possibility of repurposing them in mobile applications is also necessary. This article presents an experimental test that can be used to collect the data necessary to fill a battery passport. The proposed procedure can facilitate the decision-making process regarding the suitability of a battery for reuse at the end of its first life. Once the battery passport has been completed, the performance and characteristics of the battery are compared with the requirements of several mobile applications. Mobile charging stations and forklift trucks were identified as relevant applications for the reuse of high-capacity prismatic cells. Finally, a definition of the state of health (SoH) is proposed to track the suitability of the battery during use in the second-life application considering not only the energy but also the power and efficiency of the battery. This SoH shows that even taking into account accelerated ageing data, a repurposed battery can have an extended life of 11 years at 25 °C. It has also been shown that energy fade is the most limiting performance factor for the lifetime and that cell-to-cell variation should be tracked as it has been shown to have a significant impact on the battery life.

Funder

Région Auvergne-Rhône-Alpes

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3