Affiliation:
1. School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
2. Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
Abstract
Based on amino polybenzimidazoles with flexible hydrophilic side chains (AmPBI-MOE) and polymeric ionic liquid (PIL), a series of composite membranes (AmPBI-MOE-PIL-X) were fabricated for vanadium redox flow battery applications. Here, 1-Bromo-2-(2-methoxyethoxy)ethane was grafted onto amino polybenzimidazole (AmPBI) by the method of halogenated hydrocarbons, and PIL was synthesized from ionic liquids by in situ radical polymerization to build a hydrogen-bonded cross-linked network within the film. The hydrophilic side chain improves the proton conductivity. With the increase in ionic liquids, the vanadium transmittance and the proton conductivity increase. The AmPBI-MOE-PIL-5 membrane not only exhibits a vanadium ions permeability of 0.88 × 10−9 cm2 min−1, which is much lower than Nafion117 (6.07 × 10−8 cm2 min−1), but also shows a very excellent blocking ability for vanadium ion. The AmPBI-MOE-PIL-5 membrane shows excellent performances at 60 mA cm−2, with VE of 87.93% and EE of 82.87%, both higher than that of Nafion117 membrane in VRFB.
Funder
Department of Science and Technology of Jilin Province
Education Department of Jilin Province
Open Project of State Key Laboratory of Supramolecular Structure and Materials
Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献