Effects of the Nail Geometry and Humidity on the Nail Penetration of High-Energy Density Lithium Ion Batteries

Author:

Doose StefanORCID,Haselrieder Wolfgang,Kwade ArnoORCID

Abstract

Internal short-circuit tests were carried out in a battery safety investigation chamber to determine the behavior of batteries during the nail penetration test. So far, systematic investigations regarding the test setup and its influence are rarely found in the literature. Especially, to improve the comparability of the multitude of available results, it is essential to understand the effects of the geometric, operating and ambient parameters. In this study commercial lithium ion batteries with a capacity of 5.3 and 3.3 Ah were used to study the influence of the varied parameters on the voltage drop, the development of surface temperatures and of infrared active gas species. We studied both the influence of the geometry of the penetrating nail and concentration of water in the inert atmosphere especially on the quantities of the reaction products under variation of cell capacity. It could be shown that the geometry of the nail, within certain limits, has no influence on the processes of the thermal runaway of high energy density lithium ion batteries (LIBs). However, a change in capacity from 5.3 to 3.3 Ah shows that in particular the gaseous reaction products differ: The standardized gas concentrations show a higher measurable concentration of all gases except CO for the 3.3 Ah LIBs. This circumstance can be explained by the intensity of the reactions due to the different battery capacities: In the 5.3 Ah cells a larger amount of unreacted material is immediately discharged from the reaction center, and by the different available amounts of oxidizing reaction partners. An increase of the water content in the surrounding atmosphere during the thermal runaway leads to a reduction of the measurable gas concentrations of up to 36.01%. In general, all measured concentrations decrease. With increased water content more reaction products from the atmosphere can be directly bound or settle as condensate on surfaces.

Funder

Bundesministerium für Wirtschaft und Energie

Bundesministerium für Bildung und Forschung

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3