Abstract
Integration of renewable energy sources such as solar photovoltaic (PV) generation with variable power demand systems like residential electricity consumption requires the use of a high efficiency electrical energy system such as a battery. In the present study, such integration has been studied using vanadium redox flow battery (VRFB) as the energy storage system with specific focus on the sizing of the power and energy storage capacities of the system components. Experiments have been carried out with a seven-day simulated solar insolation and residential load characteristics using a 1 kW VRFB stack and variable amounts of electrolyte volume. Several scenarios have been simulated using power and energy scale factors. Battery response, in terms of its power, state of charge and efficiency, has been monitored in each run. Results show that the stack power rating should be based on peak charging characteristics while the volume of electrolyte should be based on the expected daily energy discharge through the battery. The PV source itself should be sized at about 25% more energy rating than the average daily load. The ability to design a VRFB with a high power-to-energy ratio makes it particularly attractive for PV-load integration.
Funder
Department of Science and Technology, Government of India
Ministry of Human Resource Development, Government of India
Subject
Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献